Long-Range Frustration in a Spin-Glass Model of the Vertex-Cover Problem
نویسندگان
چکیده
منابع مشابه
Long-range frustration in a spin-glass model of the vertex-cover problem.
In a spin-glass system on a random graph, some vertices have their spins changing among different configurations of a ground-state domain. Long-range frustrations may exist among these unfrozen vertices in the sense that certain combinations of spin values for these vertices may never appear in any configuration of this domain. We present a mean field theory to tackle such long-range frustratio...
متن کاملLong Range Frustrations in a Spin Glass Model of the Vertex Cover Problem
In a spin glass system on a random graph, some vertices have their spins changing among different configurations of a ground–state domain. Long range frustrations may exist among these unfrozen vertices in the sense that certain combinations of spin values for these vertices may never appear in any configuration of this domain. We present a mean field theory to tackle such long range frustratio...
متن کاملLong Range Frustration in Finite-Connectivity Spin Glasses: Application to the random K-satisfiability problem
A long range frustration index R is introduced to the finite connectivity Viana–Bray ±J spin glass model as a new order parameter. This order parameter is then applied to the random K-satisfiability (K-SAT) problem to understand its satisfiability transition and to evaluate its global minimum energy. Associated with a jump in R from zero to a finite value, SAT-UNSAT transition in random 3-SAT o...
متن کاملSpin glass approach to the feedback vertex set problem
A feedback vertex set (FVS) of an undirected graph is a set of vertices that contains at least one vertex of each cycle of the graph. The feedback vertex set problem consists of constructing a FVS of size less than a certain given value. This combinatorial optimization problem has many practical applications, but it is in the nondeterministic polynomial-complete class of worst-case computationa...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2005
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.94.217203